Problem M
 Chocolate Bar

You have a bar of chocolate which can be represented as a rectangle. Originally, the chocolate bar has a width of N and a height of M. For this problem, denote $(n \times m)$ as a chocolate bar with a width of n and a height of m.

You want to eat the chocolate with a total area of exactly K. However, you always eat a chocolate bar as a whole; that is, if you eat a chocolate bar $(n \times m)$, then you will eat all the chocolate with area $n \cdot m$.

To be able to eat exactly K total area, you are allowed to perform any of the following operations any number of times (possibly zero).

- Pick one bar of chocolate $(n \times m)$ then split it into two bars: $(n \times i)$ and $(n \times(m-i))$ such that i is an integer that satisfies $1 \leq i<m$.
- Pick one bar of chocolate $(n \times m)$ then split it into two bars: $(i \times m)$ and $((n-i) \times m)$ such that i is an integer that satisfies $1 \leq i<n$.

Determine the minimum number of operations such that it is possible to eat some chocolate bars with a total area of K.

Input
Input consists of three integers $N M K\left(1 \leq N, M \leq 10^{6} ; 1 \leq K \leq N \cdot M\right)$.

Output

Output a single integer representing the minimum number of operations such that it is possible to eat some chocolate bars with a total area of K.

Sample Input \#1

4410

Sample Output \#1

Explanation for the sample input/output \#1

The following illustration shows one of the solutions to this sample. The chocolate bars that you eat are colored red.

Sample Input \#2

```
566
```


Sample Output \#2

1

Sample Input \#3

111

Sample Output \#3

```
0
```

