

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2023

Problem M Chocolate Bar

You have a bar of chocolate which can be represented as a rectangle. Originally, the chocolate bar has a width of N and a height of M. For this problem, denote $(n \times m)$ as a chocolate bar with a width of n and a height of m.

You want to eat the chocolate with a total area of exactly *K*. However, you always eat a chocolate bar as a whole; that is, if you eat a chocolate bar $(n \times m)$, then you will eat all the chocolate with area $n \cdot m$.

To be able to eat exactly K total area, you are allowed to perform any of the following operations any number of times (possibly zero).

- Pick one bar of chocolate $(n \times m)$ then split it into two bars: $(n \times i)$ and $(n \times (m i))$ such that i is an integer that satisfies $1 \le i < m$.
- Pick one bar of chocolate $(n \times m)$ then split it into two bars: $(i \times m)$ and $((n i) \times m)$ such that i is an integer that satisfies $1 \le i < n$.

Determine the minimum number of operations such that it is possible to eat some chocolate bars with a total area of K.

Input

Input consists of three integers N M K ($1 \le N, M \le 10^6$; $1 \le K \le N \cdot M$).

Output

Output a single integer representing the minimum number of operations such that it is possible to eat some chocolate bars with a total area of K.

Sample Input #1

4 4 10

Sample Output #1

2

Explanation for the sample input/output #1

The following illustration shows one of the solutions to this sample. The chocolate bars that you eat are colored red.

Sample Input #2

566

Sample Output #2

1

Sample Input #3

1 1 1

Sample Output #3

0