Problem I
 Critical Road

The City of ICPC is preparing for a party for its anniversary. As the mayor of the city, you would like to hold a parade in each of the districts in the city.

The parade route can be represented as a Directed Acyclic Graph. There are N nodes (numbered from 1 to N) that represent the districts in the city. There are M directed edges (numbered from 1 to M) that represent the one directional roads. By using road j, the parade can move from district U_{j} to V_{j}, but not the other way around. It is known that all districts can be visited by the parade from the City Center, which resides in district 1.

A road is i-critical if the road is used in all paths from district 1 to district i. It is possible for a road to be i-critical for several values of i. You want to assess the number of i-critical roads for each i, as they are pivotal for the parade.

For each i that satisfies $1 \leq i \leq N$, determine the number of i-critical roads.

Input

The first line consists of two integers $N M(2 \leq N \leq 100000 ; N-1 \leq M \leq 200000)$.
Each of the next M lines consists of two integers $U_{j} V_{j}\left(1 \leq U_{j}, V_{j} \leq N\right)$. The edges form a directed acyclic graph, and every node can be visited from node 1 . Furthermore, there will be no multi-edges, i.e., there will be at most one edge that directs two nodes.

Output

Output N integers in a single line. Each of the integers represents the number of i-critical roads.

Sample Input \#1

```
67
12
2 3
24
13
3 5
56
26
```


Sample Output \#1

```
0 1 0 2 1 0
```


Explanation for the sample input/output \#1

The following illustration depicts this sample. The numbers on the edges are the edge numbers.

It can be seen that edge 1 is 2 -critical; edges 1 and 3 are 4 -critical; and edge 5 is 5 -critical.

Sample Input \#2

```
54
12
2 3
34
45
```


Sample Output \#2

01234

