international collegiate programming contest Indonesia National Contest INC 2023

Problem F
 Interesting Couple

You are hosting a party with N guests (numbered from 1 to N) in a large room. The party room can be represented as a 2-dimensional Cartesian space where guest i stands at $\left(X_{i}, Y_{i}\right)$. Since you have a unique personality, you require each guest to only move horizontally or vertically within this room.

The distance between two guests i and j, denoted as $d(i, j)$, is the total distance they need to travel in both horizontal and vertical directions to reach each other, i.e., $d(i, j)=\left|X_{i}-X_{j}\right|+\left|Y_{i}-Y_{j}\right|$.

The privacy value of two guests i and j, denoted as $p(i, j)$, is determined by their distances to the closest other guest. Formally, $p(i, j)$ is the smallest $\min (d(i, k), d(j, k))$ over all k where $k \neq i$ and $k \neq j$.

A pair of guest i and j is an interesting couple if and only if their privacy value is greater or equal to the distance between them. In other words, it is a pair $\langle i, j\rangle$ such that $p(i, j) \geq d(i, j)$.

Your task in this problem is to find the minimum value of $p(i, j)$ among all such interesting couples.

Input

The first line consists of an integer $N(3 \leq N \leq 100000)$.
Each of the next N lines consists of two integers $X_{i} Y_{i}\left(0 \leq X_{i}, Y_{i} \leq 10^{9}\right)$. There are no two guests stand at the same location. Formally, $\left(X_{i}, Y_{i}\right) \neq\left(X_{j}, Y_{j}\right)$ for $1 \leq i<j \leq N$.

Under the given constraints, it can be shown that an interesting couple always exists.

Output

Output an integer representing the minimum value of $p(i, j)$ among all interesting couples.

Sample Input \#1

```
4
32
64
34
4
```


Sample Output \#1

```
3
```


Explanation for the sample input/output \#1

The only interesting couple is $\langle 1,3\rangle$, with guest 2 being the closest guest to this couple. Their privacy value is $\min (d(1,2), d(3,2))=\min (5,3)=3$.

Sample Input \#2

```
3
46
8
64
```


Sample Output \#2

Explanation for the sample input/output \#2
There are 3 possible guest pairs, and all of them are interesting couples, each with a privacy value of 4 .

Sample Input \#3

```
5
1 5
2 5
1 1 5
125
205
```


Sample Output \#3

```
8
```

Explanation for the sample input/output \#3
There are two interesting couples, $\langle 1,2\rangle$ and $\langle 3,4\rangle$, with privacy values of 9 and 8 , respectively.

Sample Input \#4

| 5 | |
| :--- | :--- | :--- |
| 4 | 4 |
| 4 | 3 |
| 4 | 5 |
| 3 | 4 |
| 5 | 4 |

Sample Output \#4

```
1
```

