Problem L

Expected Beauty

Morgan the robot has an array A of size N, indexed from 1 to N. The value of each element in A is randomly generated; A_{i} can be any integer from L_{i} to R_{i} (inclusive) with equal probability.

Morgan defines the beauty of A as follows. First, Morgan has a variable named score that is initialized to 0 . An operation on the array a is as follows:

- Choose an index i such that $1 \leq i<|a|$ and $a_{i}=a_{i+1}$. If no such i exists, then the operation cannot be performed.
- Add the value of a_{i} to score and remove a_{i} from the array.
- The array a becomes the concatenation of the remaining elements without changing its order.

The beauty of A is the maximum value of score ${ }^{2}$ Morgan can possibly get after performing zero or more operations on the array A.

Since the array is randomly generated, Morgan wonders about the expected beauty of A. Due to the inefficiency of his algorithm, Morgan asks for your help to calculate the expected value.

Input

Input begins with an integer $N(1 \leq N \leq 200000)$ representing the size of array A. Each of the next N lines contains two integers $L_{i} R_{i}\left(1 \leq L_{i} \leq R_{i} \leq 10^{8}\right)$.

Output

Let $M=998244353$. It can be shown that the expected value can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q \not \equiv 0 \bmod M$. Output an integer x in a single line such that $0 \leq x<M$ and $x \cdot q \equiv p \bmod M$.

Sample Input \#1

```
3
12
2 3
13
```


Sample Output \#1

```
831870298
```


Explanation for the sample input/output \#1

There are 12 possibilities of A. Out of all possibilities, the following has positive beauty.

- $[1,2,2]$ with a beauty of 4 .
- $[1,3,3]$ with a beauty of 9 .
- $[2,2,1]$ with a beauty of 4 .
- $[2,2,2]$ with a beauty of 16 .
- $[2,2,3]$ with a beauty of 4 .
- $[2,3,3]$ with a beauty of 9 .

Therefore, the expected beauty of A is $(4+9+4+16+4+9) / 12=\frac{46}{12}=\frac{23}{6}$. Since $831870298 \cdot 6 \equiv 23$ mod 998244353 , you need to output 831870298.

Sample Input \#2

```
4
11
11
2 2
2
```


Sample Output \#2

```
9
```


Explanation for the sample input/output \#2

The only possible value of A is $[1,1,2,2]$ with a beauty of $(1+2)^{2}=9$.

Sample Input \#3

```
3
12
34
5
```


Sample Output \#3

```
0
```

