Problem H
 Sorting Machine

Adrian knows that Morgan the robot is capable of sorting texts, but he is uncertain about Morgan's efficiency in doing the task. Adrian decides to give Morgan a test on his efficiency.

First, Adrian gives Morgan a list of N equal-length texts, numbered from 1 to N. Each text is a string S_{i} that contains M characters, indexed from 1 to $M . S_{i j}$ represents character j in string S_{i}.

Adrian will give Morgan Q tasks. Each task is represented by a tuple $\langle A, B, L, R, X\rangle$ satisfying the following.

- $1 \leq A \leq B \leq N$
- $1 \leq L \leq R \leq M$
- $1 \leq X \leq B-A+1$

For each task, Morgan should perform the following procedures.

1. Copy the original list of texts; let T be the copied list. This list will be updated throughout the task.
2. Remove all texts i from T that are not within the range of $A \leq i \leq B$.
3. For all remaining texts in T, remove all characters at index j that are not within the range of $L \leq j \leq R$;
4. The remaining texts in T is renumbered from 1 to $B-A+1$. Mark text X in T.
5. Sort T lexicographically; let the result be T^{\prime}. Note that the performed sort is a stable sort, meaning that if two texts are equal, then they maintain their order in the sorted list.
6. Output the position of the marked text in T^{\prime}. The lexicographically smallest text will be at position 1 (one-based).

The image below are the ilustrations how the procedure works.

It turns out that it takes Morgan a lot of time to solve those tasks. Therefore, Adrian asks for your help to improve Morgan's program so that he can solve those tasks quickly and accurately.
A string s of length n is lexicographically smaller than string t with the same length if there exists an integer $1 \leq i \leq n$ such that $s_{j}=t_{j}$ for all $1 \leq j<i$, and $s_{i}<t_{i}$.

Input

Input begins with two integers $N M(1 \leq N, M \leq 100000 ; 1 \leq N \times M \leq 100000)$ representing the number of texts and the length of each text, respectively. Each of the next N lines contains a string S_{i} representing text i. Each text contains M lower-case characters.

The next line contains an integer Q ($1 \leq Q \leq 100000$) representing the number of tasks. Each of the next Q lines contains five integers $A B L R X(1 \leq A \leq B \leq N ; 1 \leq L \leq R \leq M ; 1 \leq X \leq B-A+1)$ representing a task.

Output

For each task, output an integer in a single line representing the answer of that task.

Sample Input \#1

```
56
adrian
morgan
george
undine
stella
5
1 5 1 6 1
1516 2
12361
2435 3
1256 2
```


Sample Output \#1

[^0]3

```
|
1
2
```


Explanation for the sample input/output \#1

For tasks 1 and 2 , the final T is all of the given texts. Task 1 marks text 1 of T, which is adrian; while task 2 marks text 2 of T, which is morgan. After sorted, the list T^{\prime} becomes [adrian, george, morgan, stella, undine]. The marked text in task 1 is at position 1 in T^{\prime}. Similarly, the marked text 2 is at posiition 3 in T^{\prime}.

For task 3, the final T is [rian, rgan]. Task 3 marks text 1 of T, which is rian. After sorted, the list T^{\prime} becomes [rgan, rian]. The marked text in task 3 is at position 2 in T^{\prime}.

For task 4, the sorted list T^{\prime} contains [din, org, rga]. Task 4 marks text 3 of T, din, which is at position 1 in T^{\prime}.

For task 5 , the sorted list T^{\prime} contains [an, an]. Note that both an are different from each other; the first one is taken from text 1 of T, while the second one is taken from text 2 of T. Task 5 marks text 2 of T, an taken from text 2 of T, which is at position 2 of T^{\prime}.

Sample Input \#2

```
3 9
indonesia
nationaln
contestco
3
2 2 1 9 1
12372
1325 2
```


Sample Output \#2

```
1
2
1
```


[^0]: 1

