international collegiate programming contest Indonesia National Contest INC 2022

Problem E Walking Around

You are given a weighted tree with N vertices, numbered from 1 to N. The edges are numbered from 1 to $N-1$, where edge i connects two vertices U_{i} and V_{i} with a weight of a non-negative integer W_{i}.

A path in the tree is defined as a sequence of unique vertices $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ for some $m \geq 1$ such that each pair of adjacent vertices, $\left(u_{j}, u_{j+1}\right)$ for all $0 \leq j<m$, is connected by an edge in the tree. Define the score of a path $\left(u_{0}, u_{1}, \ldots u_{m}\right)$ as the bitwise XOR of the weight of all edges in the path, i.e. $\operatorname{XOR}\left(w_{0}, w_{1}, \ldots, w_{m-1}\right)$ where w_{j} is the weight of the edge that connects u_{j} and u_{j+1} (for all $0 \leq j<m$).

Your task is to find the minimum and the maximum score of any path that can be obtained from the given tree.

For example, the minimum and the maximum score of any path in the following tree are path $(4,2,1)$ with a score of $\operatorname{XOR}(2,3)=1$, and path $(5,2,1,3)$ with a score of $\operatorname{XOR}(8,3,4)=15$, respectively.

Input

Input begins with an integer $N(2 \leq N \leq 100000)$ representing the number of vertices in the given tree. Each of the next $N-1$ lines contains three integers $U_{i} V_{i} W_{i}\left(1 \leq U_{i}<V_{i} \leq N ; 0 \leq W_{i} \leq 10^{9}\right)$ representing edge i.

Output

Output two space-separared integers in a single line, representing the minimum and the maximum score of any path that can be obtained from the given tree in that order.

Sample Input \#1

```
6
123
134
242
2 5 
3 6 1
```


Sample Output \#1

```
15
```

Explanation for the sample input/output \#1
The illustration in the description section represents this example.

Sample Input \#2

```
6
124
13 3
141
4 7
162
```


Sample Output \#2

17

Sample Input \#3

```
1 0
125
133
248
3 57
266
579
4 8
196
6 10 11
```


Sample Output \#3

```
O 14
```

