
Problem Analysis
Disclaimer: This is an analysis of some possible ways to solve the problems of The 2024 ICPC
Asia Jakarta Regional Contest. Since the purpose of this analysis is mainly to give the general
idea to solve each problem, we left several (implementation) details in the discussion for reader’s
exercise. If some of the terminology or algorithms mentioned below are not familiar to you, your
favorite search engine should be able to help.

Problem Title Problem Author

A Scrambled Scrabble Ashar Fuadi

B ICPC Square Pikatan Arya Bramajati

C Saraga Pikatan Arya Bramajati

D Aquatic Dragon Ashar Fuadi

E Narrower Passageway Ashar Fuadi

F Grid Game 3-angle Prabowo Djonatan

G X Aura Lie, Maximilianus Maria Kolbe

H Missing Separators Ammar Fathin Sabili

I Microwavable Subsequence Pikatan Arya Bramajati

J Xorderable Array Prabowo Djonatan

K GCDDCG Muhammad Ayaz Dzulfikar

L Buggy DFS Muhammad Ayaz Dzulfikar

M Mirror Maze Rafael Herman Yosef

Analysis Authors

Ammar Fathin Sabili

Lie, Maximilianus Maria Kolbe

Pikatan Arya Bramajati

Prabowo Djonatan

Rafael Herman Yosef

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 1

A. Scrambled Scramble

Let’s ignore NG and Y case for now. Assuming that we have v vowels and c consonants, and s is
the number of syllables. The number of syllables we can make is s = min(v, ⌊ c2⌋), and the word
length is 3× s.

To solve this task, we count the number of vowels (excluding Y), consonants (excluding Y, N, G),
Y, N, and G. Then, we iterate over the number of NG consonants we want to use. For each NG,
we reduce the number of N and G by one. For each possible number of NG consonants, we try
different combinations of Y as vowels and consonants.

For each scenario, we calculate the word length that we can construct. When calculating the length,
we adjust the formula to account for NG consonants, prioritizing them over other consonants. Thus
the length of the word for each scenario is 3× s+min(2× s, |NG|)

The time complexity of this solution is O(N2).

There’s also a solution that runs in linear time.

B. ICPC Square

First, notice that we can never visit any floor that isn’t a multiple of S. This means that we can
divide both N and D by S and we start at floor 1. We will multiply our answer with S in the end to
get our final answer. Let N ′ = ⌊NS ⌋ and D′ = ⌊DS ⌋.

The upper bound floor that can be reached is min(2×D′, N ′). If we try to reach any floors higher
than that, then the difference between that floor and the earlier floor will be bigger than D′. This is
because the factor of a number that is not itself must be at most half of itself.

Let Y = min(2×D′, N ′). We can reach floor Y if any of these conditions satisifed.
• Y is even. We can reach floor Y from Y

2 , and because Y
2 value is at most D′, therefore we

can reach floor Y
2 from 1.

• There exists an integer X such that Y is divisible by X, and Y − Y
X ≤ D′. Y

X value is also at
most D′, thus we can reach floor Y

X from floor 1. We can find X in O(
√
Y).

If we cannot reach floor Y , then the answer is floor Y − 1 because that floor is even.

The time complexity of this solution is O(
√
N)

C. Saraga

For strings, denote the + operation as concatenation.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 2

Notice that for a string Z to be an interesting abbreviation of S and T , it must consists of three
non-empty string parts P , Q, and R such that:

• Z = P +Q+R

• P +Q is a prefix of S.

• Q+R is a suffix of T .

Consider a valid triple (P,Q,R) where |Q| > 1. We can always construct two new strings:

• Q′ is taking Q and removing its last character.

• R′ is taking R and appending that last character of Q to the beginning of R.

Since P +Q is a prefix of S, that means P +Q′ is also a prefix of S. Next, Q′ +R′ = Q+R, so it’s
also a suffix of T . Both Q′ and R′ are non-empty. Therefore, (P,Q′, R′) is also a valid triple.

From any valid triple, we can always repeatedly do the same process to get a valid triple with the
same length where |Q| = 1. That means, to consider for all possible triples, we can just consider
all triples with |Q| = 1.

If |Q| = 1, then Q can only be a single letter, which there are only 26 possibilities. Since P , Q,
and R can’t be empty, we can only consider prefixes of S and suffixes of T with a length of at least
2. For each such prefix of S, look at its last character. For each such suffix of T , look at its first
character. These two characters will be the single-letter string Q, so they must match.

For each letter from a to z, find its shortest prefix in S and its shortest suffix in T to form Z. Out
of all 26 letters, find any one with shortest length, or report if Z can’t be formed from any of the 26

letters.

The time complexity of this solution is O(N).

D. Aquatic Dragon

If Tf ≤ Ts, then we can just fly all the way from island 1 to island N without swimming or walking.
From now on, we will solve if Tf > Ts.

For a valid solution, if we look at the walking steps, it will consist of a set of segments. Since each
tunnel can only be traversed once, there can’t be any two walking segments that overlap. However,
two walking segments can still touch at their endpoints.

There can be islands that are not covered by any walking segments. We can add a zero-length
walking segment for each of these islands, which will help in generalizing the steps in the entire
journey.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 3

After doing that, we can decompose the entire journey into several steps, where each step going
from some island x to some island y (x < y) corresponds to exactly one walking segment, which
is as follows:

1. Walk from island x to either island y− 1 or island y, then go back to island x to activate every
shrine in that area.

2. Move the dragon to island y.
We walk to island y − 1 if the walking segment doesn’t touch the next walking segment. We walk
to island y if the walking segment touches the next walking segment.

Note that after walking from x to y − 1 and back, we activate every single shrines from x to y − 1.
That means, our dragon won’t get any stamina increase when going from x to y. That means, when
going from x to y − 1, we have to swim all the way. When going from y − 1 to y, we can choose to
either fly or swim.

In a step where the walking segment touches the next walking segment, it’s always not optimal
if we swim at the end of that step. That’s because, if we do that, then it’s just better to merge
that walking segment with the next walking segment to activate more shrines earlier without any
consequences.

That means, each step for going from island x to island y is of three types:
1. Walk to y − 1 and back, swim at the end.

2. Walk to y − 1 and back, fly at the end.

3. Walk to y and back, fly at the end.
For now, let’s assume we can’t fly at all. If we want to begin a step at island x, before we activate
the shrine at island x, the stamina is always P1 + P2 + ... + Px−1 − D × (x − 1) no matter what
we did before this. That means, if we want to do a step from island x to island y where we swim
in the end, it must hold that P1 + P2 + ... + Py−1 −D × (y − 1) ≥ 0. The total time of this step is
Tw × (y − 1− x)× 2 + Ts × (y − x).

Let’s add flying into the mix. The only thing that matters is the last time we flew and whether that
step was type 2 or type 3. Let’s say the last time we flew was flying from island l− 1 to island l and
it was a type 2 step. If we want to begin a step at island x, before we activate the shrine at island x,
the stamina is always Pl+Pl+1+ ...+Px−1−D×(x− l) because flying makes our stamina go down
to 0. The requirement to do the step as before is similar, it’s just Pl+Pl+1+...+Py−1−D×(y−l) ≥ 0.

If the last time we flew was a type 3 step, then the shrine at island l is already used after that step,
so the stamina at island x is Pl+1 + Pl+2 + ... + Px−1 − D × (x − l). The requirement becomes
Pl+1 + Pl+2 + ...+ Py−1 −D × (y − l) ≥ 0.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 4

We can make a prefix sum of P . Let Qi = P1+P2+ ...+Pi. To simplify the many calculations after
this, define two more arrays R and S such that Ri = Qi−1−D× (i−1) and Si = Qi−D× (i−1). If
the last time we flew was flying from island l− 1 to island l with a type 2 step and we want to begin
a step at island x to island y where we swim in the end, it must hold that Ry ≥ Rl. If it was a type
3 step, then it must hold that Ry ≥ Sl.

We can calculate a value pivot which can be Rl (if the last time we flew was a type 2 step) or Sl (if
the last time we flew was a type 3 step). Then, doing a type 1 step from x to y requires Ry ≥ pivot.

Next, consider the type of step where we fly in the end. Let’s consider a type 2 step first. The
stamina at island y− 1 must be strictly positive. It can be obtained that the equivalent requirement
is Ry > pivot −D must hold. For a type 3 step, it must hold that Sy > pivot −D.

Notice that after doing that step, the last time we fly changes, and a new pivot value is calculated,
which is actually either Ry or Sy depending on which type the step is. That means, doing the
requirement to do the step above is newPivot > pivot −D.

Let’s solve the problem if flying is not allowed. To do a step from any island to an island y, the only
requirement is that Ry ≥ R1. The swimming time is fixed, we only have to minimize the walking
time. Let’s say we add Tw × (N − 1)× 2 to the total walking time. Doing a step essentially reduces
the walking time by Tw × 2. That means, we need to maximize the number of steps. We can do
a step to any island y that has Ry ≥ R1. That means, the maximum number of steps is the total
number of y (1 < y ≤ N) with Ry ≥ R1. Note that there is a corner case when it comes to island
N . We need to consider the case where we go to island N and back before moving our dragon to
island N by swimming all the way. We can do this if SN ≥ R1.

After knowing everything, we can solve this problem using dynamic programming from the back.
Let dp[x][0] be the minimum time to go to island N if we’re in island x with our dragon and the last
time we flew was from island x − 1 to island x with a type 2 step. Let dp[x][1] be the same thing,
but for type 3. For both, we can calculate the value of pivot. When trying to calculate the optimal
value for dp[x][e], let’s say we want to consider a solution where the next time we fly is from island
y − 1 to island y. That means, our journey from island x to island y must end with a step where
we fly at the end. Depending on the type of that step, we can calculate the value of newPivot and
find out whether the next DP value dp[y][e′] is e′ = 0 or e′ = 1. That means, it must hold that
newPivot > pivot − D. If that holds, the maximum number of steps where we swim at the end is
the number of islands i (x < i < y) with Ri ≥ pivot. Let’s say that number is c. That means, the
minimum time for this case is Ts × (y − 1 − x) + Tf + Tw × (y − 1 − x − c + e′) × 2 + dp[y][e′].
We try for both cases for the two possible types for the last step going into island y. The naive
implementation of this solution runs in O(N2).

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 5

Let’s optimize it. Notice that the hard thing to keep track is the value c, because it’s heavily reliant
on the value of pivot and there are a total of 2N different values of pivot. But we can handle it with
one important observation. To get dp[x][e] from dp[y][e′], the only requirement is that newPivot >
pivot − D must hold. However, is it optimal to get dp[x][e] from dp[y][e′] if newPivot ≥ pivot?
Consider the last step at that case, which is when we fly at the end. Consider what happens if
we change that step such that we swim at the end. Since we assume that Tf > Ts, changing that
step will reduce the time. Next, look at what happens after the step. Flying at the end changes our
main comparison value to newPivot, while swimming keeps it being pivot. If newPivot ≥ pivot, it’s
essentially worse because it reduces our move possibilities and reduces the number of steps we
can do to reduce the total walk time. That means, flying to an island y where newPivot ≥ pivot is
objectively worse and we can be good just by ignoring that case.

That means, for each dp[x][e], we can get that value from every dp[y][e′] such that pivot − D <

newPivot < pivot. Since the way we calculate pivot is the same as newPivot, that means, we can
sort the pairs (x, e) based on increasing values of pivot (either Rx or Sx). We iterate each pair (x, e)
based on that order and calculate its value of dp[x][e].

In order to get the values of dp[x][e], we maintain two segment trees, for e′ = 0 and e′ = 1. Each
index y in the segment tree maintains the value of dp[y][e′] plus the additional values of Ts, Tf , and
Tw if we want to take its value for dp[x][e], so we can do a range minimum query to get the optimal
value for the transition.

The following is the way to handle each value of Ts, Tf , and Tw:

• For Ts, we just add each index y in the segment tree with Ts × (y − 1), so we can add Ts × x

after the range query.

• For Tf , it’s just constant since we always do it once in each transition, so add everything by
Tf .

• For Tw, initially, we don’t walk at all since Ry ≥ pivot always holds if pivot is from the smallest
value. Each time we iterate (x, e) to a bigger value of pivot, there can be more values of Rx

that becomes smaller than the current value of pivot, so for each of them, we must do 1 length
worth of walking in order to pass that, so for every index y in the segment tree after that x, we
add Tw × 2. We handle that using a range update. Additionally, there’s also an extra Tw × 2

for each value with e′ = 1.

After we get a new value of dp[x][e], we add it to the corresponding segment tree. Each time we
iterate to the next bigger value of pivot, we have to discard the values of previously calculated
dp[y][e′] with newPivot ≤ pivot −D by changing its value in the segment tree to infinity.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 6

The answer is dp[1][0]. Don’t forget to handle the corner case with island N as previously men-
tioned.

The time complexity of this solution is O(N logN).

E. Narrower Passageway

We can solve this problem with contribution technique. Let prob(r, c) be the probability of cell (r, c)
contributing to the expected total strength, i.e. there is a connected area such that the strength is
taken from cell (r, c). The expected total strength will be

∑
Pr,c · prob(r, c).

For a cell (r, c) to contribute to the expected total strength, the connected area [u, v] has to satisfy
the following conditions:

• Pr,c is the largest power in row r of the connected area, and

• the maximum power in the other row of the connected area is larger than Pr,c.

The main challenge of this problem is to compute the number of such connected areas for all cells
efficiently. We can use sweep-like algorithm to compute these values in the order of Pr,c sorted
ascendingly. Let’s call a cell that has been computed by the sweep as active. We need to maintain
ranges consisting of only active cells, as well as the maximum value for each row in the connected
areas. This can be achieved in O(1) or O(logN) using Union-Find Disjoint Set or STL Set.

Suppose that we want to calculate the contribution of cell (r, c). Let r′ be the row other than r.
Denote [left1, right1] as the maximal range consisting of active cells such that left1 ≤ c ≤ right1.
Denote [left2, right2] as a range that satisfy the following conditions:

• left2 is the maximum between left1 and p+ 1 with p being the rightmost column to the left of
c such that Pr′,left2 > Pr,c.

• right2 is the minimum between right1 and p − 1 with p being the leftmost column to the right
of c such that Pr′,right2 > Pr,c.

The value of left2 and right2 can be calculated in O(logN) using binary search or STL Set lower
bound.

Note that Pr,c contributes for all connected areas [u, v] that satisfy one of the following conditions:

• left1 ≤ u < left2 and c ≤ v ≤ right1, or

• left1 ≤ u ≤ c and right2 < v ≤ right1.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 7

Do not forget to handle the double counting if both conditions are satisfied.

Finally, the cells outside the connected area [u, v] will not affect the contribution. Denote f(r, c, u, v)

as the probability of the connected area [u, v] such that cell (r, c) contributes to the expected total
strength. Column u− 1 and v+1 has to be foggy. Columns in [1, u− 2] and [v+2, N] can be either
foggy or not. Therefore, f(r, c, u, v) is 2 to the power of the number of columns in [1, u − 2] and
[v + 2, N], divided by 2N . Do not forget to handle the case if u = 1 or v = N .

Therefore, the contribution of Pr,c is the sum of f(u, v) for all valid connected areas [u, v]. This value
can be precomputed and we can count prob(r, c) in O(1). This can be done by using calculating
the sum for each of the left and right sides independently, and then multiplying the two sums. To
calculate each side, we can calculate the sum of powers of 2 in O(1) using the identity 20 + 21 +

22 + . . .+ 2k = 2k+1 − 1.

Do not forget to handle the double counting due to the value of Pr,c being not distinct. This can be
handled easily in the sweep, for example, by working on the smaller c first, then add the following
condition: Pr,c is strictly larger than Pr,c′ for active cells (r, c′) that satisfy c′ > c.

The time complexity of this solution is O(N logN).

F. Grid Game 3-angle

For each 0 ≤ i ≤ K, let ai be the result of considering every cell (x, y) satisfying x ≡ i (mod (K +

1)), taking the number of stones modulo K + 1 in each of them, and XOR-ing all of those modulo
results.

Theorem 1. If any ai (0 ≤ i ≤ K) is not zero, then the first player will win the game. Otherwise,
the second player will win the game.

This theorem essentially solves the problem, so we will try to prove it by introducing more lemmas.

Lemma 2. If all ai (0 ≤ i ≤ K) is zero, then whatever move made by the next player will make at
least one j (0 ≤ j ≤ K) such that aj becomes non-zero.

Proof. Suppose the player choose cell (x, y), then the number of stones (modulo K+1) on that cell
must also change (recall that the player is only allowed to remove 1 to K stones). Consequently,
the value of ax mod (K+1) must also change. The cell (x, y) is the only cell that affects ax mod (K+1),
because for each of all other cells, say (x′, y′), in which the player can add stones to it, none of
them is x′ ≡ x (mod (K + 1)) because x < x′ ≤ x+K. □

Lemma 3. If there exists an i with ai ̸= 0, then there exists a move that makes every ai becomes
zero.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 8

Before we start proving this lemma, we need to see how you can control the value of ai when you
remove and add stones.

Lemma 4. Suppose ai is not zero (for some 0 ≤ i ≤ K), then among every cell (x, y) with x ≡ i

(mod (K +1)), we can choose exactly one cell such that after removing (from 1 to K stones) from
it, the value of ai becomes zero.

Proof. This is the consequence of the result of the standard nim game where all of the piles have
less than or equal to K stones. □

Lemma 5. Suppose you have a sequence x1, . . . , xn such that n ≥ 2 and 0 ≤ xi ≤ K, then it is
possible to modify any two elements (into a value that is also at most K) which result in their XOR
sum to be zero.

Proof. Pick any two elements, p and q, then let X = x1 ⊕ . . .⊕ xn ⊕ p⊕ q. Let b be the position of
the most significant bit of K. If the b-th bit is set in X, then we set p′ = 2b, otherwise p′ = 0. Next,
set q′ = X ⊕ p′. Do notice that the b-th bit of q′ is guaranteed to be 0, so q′ ≤ K. Finally, replace p

with p′ and q with q′ and we are done. □

Note that modifying one element is indeed not enough, as K is not a power of two minus one. Now
we are ready to prove our remaining lemmas.

Proof of Lemma 3. Let I be the set of all i such that ai ̸= 0. Let ci (i ∈ I) be a cell whose stone
removals can make ai into 0 (such a cell must exist by Lemma 4). Among all the cells ci, pick the
one that has the lowest row number (such a cell uniquely exists), and denote it as C. Start the move
by removing stones from C, making its corresponding ai become zero. Next, for all the remaining
ai ̸= 0, there are at least two corresponding cells which we can add stones to them (this is due
to the setting of the game, and the fact that we chose the cell with the lowest row number hence
these two cells exist "below" the chosen cell). Since we can add 0 to K stones, we can essentially
"modify" the number of stones (modulo K+1) of that cell to any value at most K; hence by Lemma
5, we can make the corresponding ai zero. □

To complete the main theorem.

Proof of Theorem 1. If the current grid has no more stones, every ai will be zero, hence it is a
losing position. Otherwise, if all ai is zero, then by Lemma 2, the next turn will have at least one ai

that is non-zero. If there exists an ai that is positive, then by Lemma 3, there exists a move such
that the next turn will be the losing position. Since the game eventually ends, if the first player starts
with at least one ai that is positive, then there is a sure-win strategy. □

This completes the solution.

The time complexity of this solution is O(M logM) for each test case.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 9

G. X Aura

Note that for all scenarios to be valid, the total penalty of all cycles have to equal 0. Define this
property as zero-cycle.

The most important observation is that the grid is zero-cycle iff all two-by-two subgrids within the
grid are zero-cycle. It can be proven that any cycle can be transformed to any other cycle while
maintaining the total penalty of 0 by a series of substitutions to the penalty. Thus, we can check
whether a grid is zero-cycle in O(NM).

Let d(u, v) be the minimum total penalty from cell (ru, cu) to (rv, cv). Note that due to the zero-
cycle property, the following equations hold: d(u, v) = −d(v, u) and d(u, k) + d(k, v) = d(u, v). To
summarize, the calculation of minimum total penalty behaves like vector addition.

There are a lot of solution, and the following is one of the easier to implement. Denote s as the cell
(1, 1). Note that d(u, v) = d(u, s) + d(s, v) = d(s, v) − d(s, u), which makes this problem a single-
source shortest path problem. We can precompute d(s, u) in O(NM) and answer each query in
O(1).

The time complexity of this solution is O(NM).

H. Missing Separators

Greedy won’t work for this problem, let’s use dynamic programming instead.

First, assume that we want to construct the words from the front to the end of S. Let DP[x][y]
denote how many more words we can construct if the last word we constructed is the substring
S[x..y]. Therefore, we will only consider the substring after the y-th position for the transitions.
Note that it is very possible that the DP will return an impossible case, in which the list couldn’t be
in a lexicographical order later on.

For the transitions, for some z, we need to guarantee that substring S[y+ 1..z] comes after S[x..y]
in a lexicographical order. It is important to note that if S[y+1..z] comes after S[x..y], then actually
S[y+1..z+1] also comes after S[x..y]. In fact, this is also applicable for all k ≥ 0 that S[y+1..z+k]

comes after S[x..y]. Thus, given x and y, we can try to find the first possible z.

Observe that we can do it by finding the longest common prefix of S[x..y] and S[y + 1..]. If the
longest common prefix is S[x..y] itself, then S[y + 1..] will always come after S[x..y], given that the
new word is longer. Else, we only need to check their first different letter. We make sure that the
new word has a lexicographically larger letter, or otherwise it will lead to an impossible case.

But how do we find the longest common prefix of S[x..y] and S[y + 1..] in an efficient way? We

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 10

might think of doing a binary search, possibly with string hashing, but the overall runtime will be at
least Ω(|S|2 log |S|) which is still quite slow. Another idea is to precompute these longest prefixes
for every possible substring of S. The main trick here is that we can compute the longest common
prefix of suffixes of S using another dynamic programming!

Let LCPS[p][q] denote the length of the longest common prefix of the suffixes S[p..] and S[q..]. It’s
not hard to see that LCPS[p][q] is simply 1 + LCPS[p + 1][q + 1] if S[p] = S[q], or 0 otherwise.
Utilizing this second DP, the longest common prefix of S[x..y] and S[y+1..] will then have a length
of LCPS[x][y + 1], subject to be minimized with the length of S[x..y] itself.

Finally, after finding the z, we still need to find the maximum DP value among DP[y + 1][z + k] for
all k ≥ 0. This can be done in O(1) by (again) precomputing the max suffix of the second state of
the DP.

After getting the DP values, we can use these DP values to backtrack to get a possible valid
construction for the answer.

The time complexity of this solution is O(|S|2).

I. Microwavable Subsequence

Define a value x as occuring if and only if it’s present in A; otherwise, we define it as non-occuring.
Let c be the number of occuring values.

For each pair x and y, if both x and y are non-occuring, then f(x, y) = 0. If exactly one of x or y is
occuring, then f(x, y) = 1. The number of such pairs is c× (M − c).

Now consider the case where both x and y are occuring. For now, let’s ignore all of the numbers
in A aside from x and y. The length of the longest alternating subsequence is equal to the number
of pairs of adjacent elements with different values, plus one.

Now, we want to calculate the number of pairs for all (x, y) at once. The number of such pairs is
equal to the number of pair of indices (i, j) where i < j, and all of the elements within the range
from i+ 1 to j − 1 is neither Ai nor Aj .

To calculate that number, we can iterate A from left to right while maintaining the index of the last
occurence for each value. For each index i, let l be the index of the last occurence of Ai. We want
to calculate the number of last occurences between l + 1 and i − 1 inclusive. We can solve this
using Fenwick Tree/segment tree data structure.

Don’t forget to add one for each pair of occuring values x and y.

The time complexity of this solution is O(N logN).

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 11

J. Xorderable Array

Let’s say we have two non-negative integersB0 andB1. Let’s observe how to compare the values of
B0 and B1 by their binary representations bit by bit. We iterate the bits of B0 and B1 simultaneously
from the most significant bit to the least significant bit. Let’s say the current bit of each of B0 and
B1 are b0 and b1 respectively. There are three cases:

• If b0 < b1, then it’s decided that B0 < B1.

• If b0 > b1, then it’s decided that B0 > B1.

• If b0 = b1, then we check the next bit.

Now, given two non-negative integers P andQ, let’s consider the (P,Q)-xorderability of just one pair
of values B0 and B1. Just like before, we iterate the bits simultaneously from the most significant
bit. Let’s say the current bit of each of P , Q, B0, and B1 are p, q, b0, and b1.

• If p = q = 0, then the comparison for b0 and b1 uses the same rule as an ordinary comparison.

• If p = q = 1, then the comparison for b0 and b1 uses the same rule as an ordinary comparison,
but the verdict for b0 < b1 and b0 > b1 are flipped.

• If p ̸= q, then there are two cases:
– If b0 = b1, then it’s actually impossible to xorder the pair (B0, B1). This is because no

matter how we xorder the pair, there will always be the expression 1 ≤ 0 in this bit.

– If b0 ̸= b1, then no matter how we xorder B0 and B1, we will always have the comparison
bits of B0 and B1 (after XOR-ed by p and q) to be equal, so we always have to check the
next bit.

For now, let’s ignore how to xorder the pair (B0, B1) and only consider its xorderability possibility.
When is the pair (B0, B1) xorderable? Notice that the only case where it’s unxorderable is when
p ̸= q and b0 = b1. Let’s consider how we would check it when iterating the bits:

• If p = q and b0 ̸= b1, then it’s decided that it’s xorderable.

• If p ̸= q and b0 = b1, then it’s decided that it’s unxorderable.

• If either both p = q and b0 = b1, or both p ̸= q and b0 ̸= b1, then we check the next bit.

Observe the logic above. Notice the similarity between that and the logic of comparing two binary
integers we discussed before. The process above is the same as comparing the two integers P⊕Q

and B0 ⊕B1. The pair (B0, B1) is xorderable if and only if P ⊕Q ≤ B0 ⊕B1.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 12

If (B0, B1) is xorderable, how should we xorder the pair to satisfy the xorder condition? The only
decider of the xorder of the pair is the case when p = q. The order of B0 and B1 should be flipped
if and only if the deciding bit is at p = q = 1.

Let’s extend this knowledge to the entire array A. That means, a requirement for A to be (P,Q)-
xorderable is that for every pair (i, j) (i < j), it must hold that P ⊕ Q ≤ Ai ⊕ Aj . In other words,
let minXOR be the minimum value of Ai ⊕ Aj among all pairs in A. Then the requirement is
P ⊕Q ≤ minXOR.

However, if A satisfies that requirement, does that mean we can xorder the entire array A to satisfy
the xorder condition? Consider the aforementioned conditions for the required xorder. We want
it such that for every bit position with p = q = 1, we flip the order of that bit. We can obtain
that it’s equivalent to sorting A based on the values of Ai ⊕ (P&Q). Sorting it like that will make
every pair in A satisfy the xorder condition. That means, if A satisfies the xorderability condition
P ⊕ Q ≤ minXOR, it’s always possible to xorder it, making the xorderability condition the only
requirement.

To solve the original problem, we first calculate minXOR. It can obtained that the value of minXOR
just by sorting A initially, calculating the XOR of adjacent values Ai⊕Ai+1, and finding the minimum
XOR among those, so it’s can be done in O(N logN).

Now, we want to calculate the number of pairs (i, j) (i < j) such that Xi ⊕ Xj ≤ minXOR. We
can solve this using a trie data structure. We iterate Xi from index 1 to M . After each iteration,
we insert the value Xi into the trie. Before we insert, we query the trie to calculate the number of
values w in the trie such that w ⊕Xi ≤ minXOR.

The time complexity of this solution is O(N logN +M logX).

K. GCDDCG

Before anything, we precompute an array mul such that mul[x] is the number of elements in A

that’s divisible by x. We can calculate this using sieve-like iterations over the frequency array of
the values in A.

We also precompute the mobius function values for all values from 1 to N . Recall that the mobius
function µ(x) is defined as follows:

• If x is divisible by a square number bigger than 1, then µ(x) = 0.

• Else, then µ(x) = (−1)c with c being the number of distinct prime factors of x.
First, let’s count the number of non-empty subsets of A with a GCD of 1. The inclusion-exclusion
logic of this calculation can be calculated using the mobius function. The number of subsets such

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 13

that its GCD is a multiple of x is 2mul[x] − 1. Using the logic of the mobius function, we can get that
the answer for this is

∑N
x=1(2

mul[x] − 1)× µ(x).

Now, let’s only count the number of ways such that the GCD of both decks are both 1. First, let’s
assume that the subsets of both decks are allowed to overlap. The number of ways for both subsets
if the GCD of the two subsets must be a multiple of x and y respectively is (2mul[x]−1)×(2mul[y]−1).
Then the answer is

∑N
x=1

∑N
y=1(2

mul[x] − 1)× (2mul[y] − 1)× µ(x)× µ(y).

However, the subsets are not allowed to overlap. Now, let’s calculate the number of ways for
both subsets if the GCD of the two subsets must be a multiple of x and y respectively and they
can’t overlap. The only values where they might overlap are the values that are multiples of
LCM(x, y). For each of those values, it can either be one of the two subsets, or neither. Let
L = LCM(x, y). Then, the number of ways for the two subsets if the subsets can be empty is
3mul[L] × 2mul[x]+mul[y]−2×mul[L]. We can just subtract the number of ways where one of the subsets
is empty, which is 2mul[x] + 2mul[y] − 1. Therefore, the number of ways such that the GCD of both
decks are both 1 is

∑N
x=1

∑N
y=1(3

mul[L] × 2mul[x]+mul[y]−2×mul[L] − 2mul[x] − 2mul[y] + 1)× µ(x)× µ(y).

Let’s find a way to calculate this quickly. To do this, we first calculate the value of
∑N

x=1

∑N
y=1(2

mul[x]−

1)× (2mul[y] − 1)×µ(x)×µ(y). This can be calculated by calculating
(∑N

x=1(2
mul[x] − 1)× µ(x)

)2
.

After that, consider the difference between the value of 3mul[L] × 2mul[x]+mul[y]−2×mul[L] − 2mul[x] −
2mul[y] + 1 and the previous simpler value (2mul[x] − 1) × (2mul[y] − 1). Notice that we can rewrite
(2mul[x] − 1)× (2mul[y] − 1) as 2mul[x]+mul[y] − 2mul[x] − 2mul[y] + 1. That means, the only difference is
on the first term.

Let’s calculate the sum of this difference. Notice that other than being dependent on x and y, this
difference is also dependent on the value of L. Notice that if L > N , then mul[L] = 0 always holds.
Then, 3mul[L] × 2mul[x]+mul[y]−2×mul[L] is equal to 2mul[x]+mul[y], so there’s no difference we need to
calculate. So the only differences we need to calculate are for L ≤ N .

We want to iterate every single pair (x, y) such that L = LCM(x, y) ≤ N . We can break down L

into a triple of values (G, x′, y′) such that:

• G = GCD(x, y)

• x′ = x′

G

• y′ = y′

G

Then we get thatL = G×x′×y′. We can set the triple (G, x′, y′) to any triple as long as GCD(x′, y′) =

1.

To iterate every triple (G, x′, y′) such thatL ≤ N , we can iterate all tuples of three values (w1, w2, w3)

(1 ≤ w1 ≤ w2 ≤ w3 ≤ N) such that w2 is divisible by w1, and w3 is divisible by w2. Here, w3

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 14

represents L, and we get the values:

• G = w1

• x′ = w2
w1

• y′ = w3
w2

For each triple (G, x′, y′), we can calculate the difference (3mul[L]×2mul[x]+mul[y]−2×mul[L]−2mul[x]+mul[y])×
µ(x)× µ(y) in O(1).

For each value of w2, there are O(N
w2

) different values of w3. So for each value of w1, there are
O(N

w1
logN) different pairs (w2, w3). Therefore, there are O(N log2N) triples.

That’s how we calculate for the total number of ways if the GCD of both decks must be k for k = 1.
But we want to calculate for every value of k from 1 to N . Notice that for a value k, the values
in A we only care about are only the multiples of k. That means, the total number of different
values is O(Nk), so the total number of triples for that k is O(Nk log2N). Therefore, in total, there
are O(N log3N) total iterations.

In practice, the total number of iterations is way smaller than that. We can also optimize it such that
we only iterate the triples that satisfies GCD(x′, y′) = 1, µ(x) ̸= 0, and µ(y) ̸= 0. The total number
of iterations is about 2× 107.

L. Buggy DFS

Denote the return value of BDFS() of a graph as the k-value of the graph. Note that we can do the
following to systematically increase the k-value of our graph. Formally, if we have two graphs with
the k-values of x and y, we can combine the graph by merging both of their starting nodes into a
single node and the k-value will be x+ y. The proof is trivial and left as an exercise for the reader.

However, the smallest non-zero k-value is 2 (from a graph with 2 nodes connected to each other).
Using the observation above, we can only create graph with an even k-value. By brute force search,
it can be shown that the smallest possible odd k-value is 11. In other words, it is impossible to
construct a graph with a k-value that equals to 1, 3, 5, 7, or 9. Otherwise, we can combine the
graph with a k-value of 11 with any graph with an even k-value for the remaining odd k-values.

The only problem is to create a graph with at most 32 768 nodes and 65 536 edges. The following
class of graph is the easiest to implement.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 15

If the graph in this class consists of x+1 nodes, it will have 2x−1 edges and k-value of x(x+3)−2.

We can repeatedly add zero or more graphs of this class until we get a combined k-value as close
as possible to K. We also need to pay attention such that the remaining difference to the actual
value K is at least 11 to make sure it’s still possible to fill in the gap in case the difference is
odd. To get it under the constraints, in each iteration, we repeatedly pick the largest x such that
x(x+ 3)− 2 ≤ K − 11 to make a graph of the aforementioned class to combine with the resulting
graph. If at the end, it needs an odd k-value, combine our graph with the graph that has a k-value
of 11. Finally, we can repeatedly combine the graph with the graph that has a k-value of 2 until our
k-value is equal to K.

Let’s calculate the total number of nodes and edges. Notice that from our constructing process,
the number of edges is always not more than twice the number of edges. That means, we only
need to make sure that the number of nodes is at most 32 768.

Let’s say the current remaining value needed is d. Then the value of x is about
√
d. And then,

the remaining value that’s needed turns into a value near 2
√
d (because the difference of k-values

between adjacent values of x is about 2x). That means, from the initial value of d = K, we iteratively
add

√
d nodes to turn d into 2

√
d, over and over again until d becomes small enough. The number

of nodes added after that is constant. It can be obtained that the value of d decreases very rapidly
in each iteration. Under the given constraints, it can be calculated that the total number of nodes
is always not more than 32 768.

The time complexity of this solution is O(
√
K).

M. Mirror Maze

Because the grid size is small, you can solve this problem using graph traversal algorithm. To
simplify the implementation, we can represent each cell as four new nodes for each of its four
sides (north, south, east, west). For empty cells, we connect the north with south node, east with
west node. For cells with type 1 mirror (/), we connect the north with west node, south with east
node. For cells with type 2 mirror (\), then connect the north with east node, south with west node.

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 16

Also don’t forget to connect the nodes for the touching sides of adjacent cells. When traversing the
graph, don’t forget to keep track of the mirrors that are already hit.

The time complexity of this solution is O(NM).

The 2024 ICPC Asia Jakarta Regional Contest – Problem Analysis 17

