
Problem Analysis
Disclaimer: This is an analysis of some possible ways to solve the problems of The 2023 ICPC
Asia Jakarta Regional Contest. Since the purpose of this analysis is mainly to give the general
idea to solve each problem, we left several (implementation) details in the discussion for reader’s
exercise. If some of the terminology or algorithms mentioned below are not familiar to you, your
favorite search engine should be able to help.

Problem Title Problem Author

A Easy As ABC Ammar Fathin Sabili

B Button Pressing Prabowo Djonatan

C Cursed Game Ammar Fathin Sabili

D Space Exploration Rafael Herman Yosef

E Merge Not Sort Ammar Fathin Sabili

F Maximize The Value Rafael Herman Yosef

G Grid Game 2 Prabowo Djonatan

H Twin Friends Ashar Fuadi

I Contingency Plan 2 Muhammad Ayaz Dzulfikar

J Count BFS Graph Muhammad Ayaz Dzulfikar

K Deck-Building Game Muhammad Ayaz Dzulfikar

L Palindromic Parentheses Lie, Maximilianus Maria Kolbe

M Triangle Construction Ammar Fathin Sabili

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 1

Analysis Authors

Ammar Fathin Sabili

Ashar Fuadi

Lie, Maximilianus Maria Kolbe

Muhammad Ayaz Dzulfikar

Prabowo Djonatan

Rafael Herman Yosef

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 2

A. Easy As ABC

This is a bonus task, and here is one possible solution.

First, initialize an empty vector V . Then, use a 6-nested loop to iterate through r1, c1, r2, c2, r3, c3;
representing all possible three cells coordinates (r1, c1), (r2, c2), and (r3, c3). Check if all cells are
three distinct cells, the first cell is adjacent to the second cell, and the second cell is adjacent to
the third cell. Insert the word created by the three cells into vector V if all checkings are satisfied.
Finally, find the minimum element in vector V .

Let N be the number of rows or columns in the input. Therefore, the total time complexity will be
O(N6), which is fast enough given that N = 3.

The total time complexity for this problem is O(N6).

B. Button Pressing

There are multiple solutions to this problem which ultimately boil down to finding invariants or equiv-
alent classes of the lamp states after button presses. Here, we present one of the solutions.

Let the current state of the lamps be a1, . . . , aN . Consider the prefix xor of the lamp states, i.e.
define pi := pi−1 ⊕ ai (for 1 ≤ i ≤ N), and we set p0 := 0 for now.

Observe that pressing button i is equivalent to swapping adjacent elements pi−1 and pi. To see
why, we observe the following two behaviours.

• Since it toggles the state of lamp i− 1 and lamp i+ 1, then it will toggle both pi−1 and pi.

• Since the pressed button is for a lamp that is on, that means pi−1 and pi are different before
(and after) the press.

Notice that p0 is involved in the operation, hence we have to consider the dual prefixes of lamp
states: one that uses p0 = 0 and the other that uses p0 = 1 (which flips all the remaining bits in the
prefix).

Two prefixes are “reachable” within each other if both of them have the same number of active bits.

To summarize, let ca and cb be the number of 1 in the prefix xor of A and B respectively, we simply
have to check whether ca ∈ {cb, N + 1− cb}.

The total time complexity for this problem is O(N).

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 3

C. Cursed Game

For N ≥ 5, there is a simple strategy to win the round in only 2 queries. For the first query, just
blacken the cell (3, 3) and let the rest be white. There will be a hole at cell (x, y) of the secret
paper iff the cell (4 − x, 4 − y) of the result grid is 1. After knowing the secret paper, it is just a
matter of implementation to construct the second query which lets you win the round. If you need
some help for the construction, it can be done in O(N2) by iteratively filling your paper row by row
then column by column, while noting the last iteration that can affect the reply grid of a certain cell.
Simply change the color of your paper at that iteration if you want to toggle that cell value of the
reply grid to 1.

For N = 3, there is a strategy to win the round expectedly in 2 queries. On each query, simply send
a randomly generated colored paper over all possible 29 possibilities. To calculate the probability
of winning the round, note that the demon will see a random color from each hole in equal (half)
probability. For each of these holes, the cell value of the result grid will be either flipped or stayed
the same with equal probability as well. Therefore, the final cell value will be basically a coin flip,
i.e. where you win if and only if it is head. If you want a more rigorous calculation to calculate the
chance of losing the game after 999 queries, it is equivalent to flipping 999 coins and getting strictly
less than 333 heads, which happens with probability less than 10−26.

To sum up, you can win the full game with a total of 666 queries in expectancy, very cursed indeed.

D. Space Exploration

For this problem, we require the following procedures.

• Find an intersection point between two lines.

• Find intersections between a segment and a convex polygon. This can be done with the help
of a binary search on the convex hull.

• Find the lines that cross a point that are tangent to a convex polygon. There should be two
such lines if the point is outside the polygon or touching the polygon’s vertex; or only one
such line if the point is on the polygon’s side. This can also be done with the help of a binary
search on the convex hull, by considering whether the tangents are touching only the upper
hull, only the lower hull, or both the upper and lower hulls.

The implementation of the above procedures will not be detailed in this analysis.

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 4

There are two major cases that we need to consider: travel with no direction change, and travel
with one direction change. The former clearly requires less distance than the latter case.

For the case when no direction change is needed, then the segment from the start point and the
end point must not intersect with the convex polygon (note that touching the polygon is fine). If
there is no such intersection, then the answer is simply the Euclidean distance between the two
points.

For the case when one direction change is needed, we first find the tangent lines of the convex
polygon that are crossing the start point and the tangent lines of the polygon that are crossing the
end point. Find a tangent line that crosses the start point intersects with a tangent line that crosses
the end point, then the answer is the Euclidean distance from the start point to the intersection
point then finally to the end point. There can be more than one such tangent lines intersection, in
which you need only the one that minimise the Euclidean distances.

If none of the above cases holds (because both points are on opposing sides of the polygon with
the same slope), then you can not reach the end point using only one direction change.

The total time complexity for this problem is O((N +Q) log(N)).

E. Merge Not Sort

Observe what happens if we merge any two arrays A and B of length N consisting of a permutation
of integers from 1 to 2N .

• Let A[P] be the first element in A[1..N] which is greater than A[1].

• Let B[Q] be the first element in B[1..N] which is greater than B[1].

• If A[1] < B[1], then the “block” A[1..P − 1] must be appended to C, as all of them must be
less than B[1].

• Else, the “block” B[1..Q− 1] will be appended to C instead.

• Repeat the procedure with the new A and B.

In the end, the C will consist of a series of appended blocks. We label these blocks to be C =

C1 ·C2 ·C3 · · · · . Observe that, no matter which the block of Ci comes from (either A or B), the first
element of Ci+1 must be the first element which is greater than the first element of Ci. Therefore,
given the input C, our first step is to split it into blocks, which can be done in O(N). To construct the
A and B, we can take note of the length of each block and then assign each block to be either from

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 5

A or B such that the total length is exactly N for both. This can be done using a simple Knapsack
DP in O(N2).

As an additional info, the original constraint for this problem is actually N ≤ 100, 000. Indeed, there
exists an O(N

√
N) algorithm to solve the problem, and this is left to reader as an exercise.

The total time complexity for this problem is O(N2).

F. Maximize The Value

First, let’s discuss how to solve this problem if all of the K are same.

We can construct an auxiliary array B with size M which contains operations that can affect AK .
If K is not between Li and Ri, then the value of array Bi is 0. Otherwise, the value of array Bi is
Xi. By using array B, a query can then be answered by returning “the maximum subarray sum in
a given range” from this array. This query can be answered using a segment tree data structure.

Now, to solve the problem for any K, we can sort the queries based on K. Initially, we need to
construct a segment tree for the auxiliary array when K = 1 and answer all queries with K =

1. When transitioning to next K, we can avoid rebuilding the segment tree by only updating the
affected indices. If operation i has Ri = K, then we need to update Bi to 0. Another case is if
operation i has Li = K+1, then we need to update Bi to Xi. Each operation i will only update the
auxiliary array at most twice.

The total time complexity for this problem is O((Q+M) logM).

G. Grid Game 2

For convenience, we define Gr,c be the game starting with a single black cell (r, c). Also define Sr,c

be the set of toggled cells (including (r, c)), if a player moves by choosing (r, c). Finally, define S′
r,c

as Sr,c \ {(r, c)}.

We will use the Sprague–Grundy theorem to solve this problem because the N black cells corre-
spond to N independent games. To see why they are independent, consider a similar game where
the only move in Gr,c to be adding new games Gx,y, for all (x, y) ∈ Sr,c. This version of the game is
clearly independent as we are only adding more games without affecting the state of other games.
Next, suppose there is already a game Gx,y and (x, y) ∈ S′

r,c before the move. Recall that for a
game G, the game sum G + G is losing, hence after the move, Gx,y can be ignored. Therefore,
this version of the game is equivalent to the original toggling game.

A game Gr,c has only a single move that can be performed on, and therefore the nimber is either 0

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 6

or 1. The key idea here is to not directly evaluate the nimber of a game, but rather the nimber sum
of all the games from a prefix.

Observe that the nimber sum of all games Gx,y for all (x, y) ∈ Sr,c is always 1. This can be seen
by noting that playing on Gr,c will result into a losing state. Since the set Sr,c can be visualised as
a square covering a grid, we note from the following figure that each of the nimber sum of all the
games in a square is exactly 1.

Therefore, we can count whether the number of squares covering the rectangle is odd or even.
This can be done using an Euclidean-like algorithm.

Since we are able to calculate the nimber of the black cells spanning from (1, 1) to (r, c), the nimber
of a single black cell easily follows.

Following is the pseudocode to compute the nimber of a single black cell.

int euclid(int r, int c) {

return c > 0 ? (r / c % 2) ^ euclid(c, r % c) : 0;

}

int nimber(int r, int c) {

return euclid(r, c) ^ euclid(r-1, c) ^ euclid(r, c-1) ^ euclid(r-1, c-1);

}

The total time complexity for this problem is O(N logmax(R,C)).

H. Twin Friends

Notice that the order of characters in A and B does not matter. What matters is the count of each
letter in the alphabet in both strings. Let’s represent each letter in the alphabet by an integer in the
[0, 26) range. Then, we define the following:

• cntA[c] = the count of letter c in A, for each c in [0, 26).

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 7

• cntB[c] = the count of letter c in B, for each c in [0, 26).

Let’s solve the problem using dynamic programming. Let DP (c, prevC) be the number of ways, if
we only consider letters [c, 26), and we already used prevC letters c from B (matched with letter
c − 1 of A). We now want to “match” the letters c in A (there are cntA[c] of them), with cntA[c]

characters from B. According to the rules, we can only use letters c or c + 1 from B. Define the
following counts:

• curC = the count of letter c taken from B.

• curC ′ = the count of letter c+ 1 taken from B, which is equal to cntA[c]− curC.

Then, the value is:
DP (c, prevC) =

∑
F (curC, curC ′) ·DP (c+ 1, curC ′)

, where:
• 0 ≤ curC ≤ cntA[c],

• prevC + curC ≤ cntB[c],

• curC ′ ≤ cntB[c+ 1].

Here, F (curC, curC ′) is defined as the number of ways to assign cntA[c] letters c to A′, with the
corresponding curC letters c and curC ′ letters c+1 to B′. The value is the product of the following
values:

• The number of ways to choose cntA[c] positions for the letters c in A′. Because we only
consider letters [c, 26), there are (cntA[c] + cntA[c + 1] + ... + cntA[25]) available positions.
Let’s simplify the expression using suffix sum sumA[c] = cntA[c]+ cntA[c+1]+ ...+ cntA[25].
So, the number of ways is

(sumA[c]
cntA[c]

)
.

• The number of ways to choose curC ′ relative positions for the letters c + 1 in B′ matching
with the corresponding positions of letters c in A′, which is simply

(cntA[c]
curC′

)
.

Therefore,

F (curC, curC ′) =

(
sumA[c]

cntA[c]

)
·
(
cntA[c]

curC ′

)
.

By manipulating the conditions for valid pairs (curC, curC ′), we can finally write out the equation
for the DP as follows:

DP (c, prevC) =
∑(

sumA[c]

cntA[c]

)
·
(
cntA[c]

curC ′

)
·DP (c+ 1, curC ′),

for all curC ′ between:

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 8

• max(0, cntA[c]− (cntB[c]− curC)), and

• min(cntA[c], cntB[c+ 1]), inclusive.

The base case is DP (26, 0) = 1, and the result is DP (0, 0).

Computing this DP directly leads to a quadratic solution. To get the full points, we need a linear
solution as follows. Observe that the equation can be rewritten as:

DP (c, curC) =

(
sumA[c]

cntA[c]

)
·
∑(

cntA[c]

curC ′

)
·DP (c+ 1, curC ′)

The expression under the sigma symbol can be computed in constant time using an auxiliary table
(hint: prefix/suffix sum of the DP). The rest is left as an exercise for the readers. Thus, the solution
will run in O(N) time.

The total time complexity for this problem is O(N).

I. Contingency Plan 2

This problem asks for the minimum number of edges to be added in a polytree such that there is a
unique topological ordering. As a reminder, a directed acyclic graph (DAG) has a unique topological
ordering if and only if it has a Hamiltonian path.

Let minimum chain decomposition of the graph be the minimum number of disjoint paths such
that each node from the graph belongs to one of the disjoint paths. The minimum number of
edges that needs to be added is related to the size of minimum chain decomposition. Let MCD =

{P1, P2, ..., P|MCD|} be the minimum chain decomposition of the DAG, where Pi represents the set
of ordered nodes in path i of the decomposition. To get MCD, we can construct a new bipartite
graph B and find the maximum matching in the B, detailed as follows.

1. For each i that satisfies 1 ≤ i ≤ N in the original graph, we create 2 new nodes in B, i.e.
outNodei and inNodei.

2. If there is an edge u → v in the original graph, then add an edge outNodeu → inNodev in B.

3. Find a maximum bipartite matching of B.

4. If outNodeu matches with inNodev, then, in the original graph, node u and node v belong to
in the same path. Moreover, v appears right after u in that path.

After we get MCD, there exists a correct order to chain the paths such that by adding an edge
from the last node of Pi to the first node of Pi+1 for each 1 ≤ i < |MCD|, will induce a Hamiltonian

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 9

path in the graph and no cycle is formed. To get the correct order to chain the paths, we need
to construct a new graph G with |MCD| vertices, where each node corresponds to a path in the
MCD. For each edge from u → v in the original graph and u ∈ Pi, v ∈ Pj such that i ̸= j, we add
an edge i → j in G. We claim that there is no cycle in G.

Proof. By contradiction, assume that there is a cycle of nodes, i.e. s1, s2, ..., sl, s1 in G. From the
way we construct G, it implies that there is a directed edge from node u ∈ Psi to v ∈ Psi+1 (for
simplicity, let sl+1 = s1) in the original polytree. Because si in G is a contraction of path Pi in the
original polytree and there is a cycle in G, therefore by following the cycle in G, we will be able to
find an undirected cycle in the polytree as well. However, a polytree has no cycle in its underlying
undirected graph. Therefore, G does not contain a cycle.

Because there is no cycle in G, we can find a topological ordering in G which corresponds to the
paths ordering such that we can add an edge for every pair of endpoints of adjacent paths in the
ordering. Thus, the minimum number of edges to be added is |MCD| − 1.

The complexity to get the find minimum chain decomposition is O(N
√
N) by using Hopcroft-Karp’s

(or Dinic’s) algorithm. As to find the correct order, the complexity is O(N).

The total time complexity for this problem is O(N
√
N).

J. Count BFS Graph

We will try to emulate the behaviour of BFS. We use the dynamic programmingDP (i, inQueue, isF irst)

— how many ways to add edges into the graph if:

• the BFS has pushed A[1..i− 1] inside the queue;

• inQueue number of A[1..i− 1] are still inside the queue;

• the front element of the queue has children (if isF irst is true) or not (if isF irst is false);

• we only consider adding edges to A[1..i− 1].

The DP transitions are as follows.

• Pop the queue and transition to (i, inQueue− 1, true).

• Enqueue A[i] by connecting it with the vertex that is in front of the queue. This can be done
when the isF irst is true or A[i−1] < A[i]. Additionally, A[i] can be connected with any of the
other vertices in the queue. Hence, there are 2(inQueue−1) ways multiplied by the transition to
(i+ 1, inQueue+ 1, false).

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 10

The base case are as follows.

• If inQueue < 0, there are 0 ways.

• Otherwise, if idx > N , there is 1 way.

The answer is then simply DP (2, 1, true).

The total time complexity for this problem is O(N2).

K. Deck-Building Game

Let XOR(S) be the xor of the deck whose card ids i ∈ S. We start with a simple yet crucial
observation: Two disjoint decks S1 and S2 have the same XOR if and only if XOR(S1 ∪ S2) = 0.
Thus, this problem boils down to calculating the following formula:

∑
S 2|S| · [XOR(S) = 0].

Denote P (i) as a polynomial (a0+ai·xi), where aj denote
∑

S 2|S|·[XOR(S) = j] if we only consider
cards whose value is i. Note that a0 and ai can be found via dynamic programming. Observe that
the formula we want to calculate is the coefficient of x0 in P1⊕P2⊕· · ·⊕Pmax(A), where ⊕ represents
XOR convolution. We have to do O(max(A)) XOR convolution, where the complexity of a single
XOR convolution is O(max(A) log(max(A))) (i.e if we use FWHT) because the highest coefficient
degree is O(max(A)). Thus, this approach would run in O((max(A))2 logmax(A)), which is too
slow.

However, we can speed-up the whole process. Suppose we do the XOR convolutions in a Divide-
and-Conquer fashion as shown below.

dnc(l, r):

if l+1 = r:

return P(l)

m := (l + r) / 2

lhs_polynomial := dnc(l, m)

rhs_polynomial := dnc(m, r)

return xor_convolute(lhs_polynomial, rhs_polynomial)

The result will be the coefficient of x0 from dnc(0, twoCeil(max(A))), where twoCeil(max(A)) de-
notes the smallest power of two that is greater than max(A). At a glance, this approach seems to
be as bad as the previous approach. However, there are some important observations that can be
made on dnc(0, twoCeil(max(A))). Proofs are omitted for brevity.

• At any point, r − l must be a power of two

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 11

• The result of dnc(l, r) will be a polynomial whose non-zero coefficients must be on xi where
i falls in [0, r − l) or [l, r)

• If we split the result of dnc(∗, ∗) into two polynomials whose range are as described above,
we can split the XOR convolution of lhs_polynomial and rhs_polynomial in dnc(l, r) into four
XOR convolution. Furthermore, the result of each convolution will be a polynomial whose non-
zero coefficients are on xi where i falls in [0,m − l), [m − l, r −m), [l,m), and [m, r) terms.
Moreover, the result of one convolution will be enclosed in exactly one of those segments.

Due to above observations, we can modify our XOR convolution such that the maximum degree of
the polynomial we convolute to be O(r − l). Thus, the complexity of the dnc(0, twoCeil(max(A)))

will be O(max(A) log2(max(A))).

The total time complexity for this problem is O(max(A) log2(max(A))).

L. Palindromic Parentheses

Note that you can always choose all opening brackets (or closing brackets) as a palindromic sub-
sequence of any balanced parentheses sequences. Furthermore, for a parentheses sequence to
be balanced, its first character must be an opening bracket and its last character must be a closing
bracket. Therefore, the answer does not exist if K < N

2 or K = N .

There are a lot of solution, and the following is one of the easier to implement.

If K = N
2 then the solution is (((. . . ())). . .). Note that if we move one of the closing brackets

in the middle to the front, i.e., ()(((. . . ())). . .), then the LPS will increase by 1. Similarly, if we
move one of the opening brackets in the middle to the back, i.e., (((. . . ())). . .)(), then the LPS
will increase by 1. We can alternately move the closing and opening brackets to increase the LPS
one by one until K = N − 1, in which the solution is ()()() . . . ().

The following are examples when N = 10.

• K = 5: ((((())))).

• K = 6: ()(((()))).

• K = 7: ()((()))().

• K = 8: ()()(())().

• K = 9: ()()()()().

The total time complexity for this problem is O(N).

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 12

M. Triangle Construction

Let M = maxAi and S = ΣAi. Pick any side P where AP = M . We then consider the following 2

scenarios.

In the first scenario, if M > 2×(S−M), then the answer will be S−M . The proof is by construction
as we can always create triangles with 2 points from side P and 1 point from the other sides. To
make sure that the triangles do not intersect, we can iteratively pair the “rightmost” 2 points of side
P with the “leftmost” point from the other sides, i.e. side P + 1. Note that this answer is already
maximum as there will be degenerate triangles created from 3 points of side P afterwards.

In the second scenario, if M ≤ 2 × (S − M), then we claim that the answer is ⌊S3 ⌋, i.e. it is
always possible to construct the maximum possible triangles which are also non-degenerate and
not intersecting. If M = 1, we can always create the triangles from 3 adjacent sides. If M ≥ 2,
we use the observation from the first scenario where we can create a triangle with the rightmost
2 points from side P and the leftmost 1 point from side P + 1. After that, form a new array A′

consisting of unchosen special points and ignoring a side with zero special points. Note that with
this new array A′, S will be decreased by 3 and M could be decreased by up to 2. By assuming
the new M is at least 2 (or otherwise we can start creating triangles from 3 adjacent sides) and the
new S is at least 3 (or otherwise no more triangle can be made), array A′ then will always fall again
into the second scenario. (The only exception is A = [3, 1, 3], however.) Repeat such construction
to complete the proof.

Computing M and S can be done in O(N), and calculating the final answer can be done with a
simple “if” in O(1).

The total time complexity for this problem is O(N).

The 2023 ICPC Asia Jakarta Regional Contest – Problem Analysis 13

