Problem M
 Triangle Construction

You are given a regular N-sided polygon. Label one arbitrary side as side 1, then label the next sides in clockwise order as side $2,3, \ldots, N$. There are A_{i} special points on side i. These points are positioned such that side i is divided into $A_{i}+1$ segments with equal length.

For instance, suppose that you have a regular 4 -sided polygon, i.e., a square. The following illustration shows how the special points are located within each side when $A=[3,1,4,6]$. The uppermost side is labelled as side 1.

You want to create as many non-degenerate triangles as possible while satisfying the following requirements. Each triangle consists of 3 distinct special points (not necessarily from different sides) as its corners. Each special point can only become the corner of at most 1 triangle. All triangles must not intersect with each other.

Determine the maximum number of non-degenerate triangles that you can create.
A triangle is non-degenerate if it has a positive area.

Input

The first line consists of an integer $N(3 \leq N \leq 200000)$.
The following line consists of N integers $A_{i}\left(1 \leq A_{i} \leq 2 \cdot 10^{9}\right)$.

Output

Output a single integer representing the maximum number of non-degenerate triangles that you can create.

Sample Input \#1

```
4
3 146
```


Sample Output \#1

```
4
```


Explanation for the sample input/output \#1

One possible construction which achieves maximum number of non-degenerate triangles can be seen in the following illustration.

Sample Input \#2

```
6
121212
```


Sample Output \#2

3
Explanation for the sample input/output \#2
One possible construction which achieves maximum number of non-degenerate triangles can be seen in the following illustration.

Sample Input \#3

```
3
1 1
```


Sample Output \#3

```
1
```

