

international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2021

Problem M Maxdifficent Group

Given an array of integers $A_{1..N}$ where $N \ge 2$. Each element in A should be assigned into a group while satisfying the following rules.

- Each element belongs to exactly one group.
- If A_i and A_j where i < j belongs to the same group, then A_k where $i \le k \le j$ also belongs to the same group as A_i and A_j .
- There is at least one pair of elements that belong to a different group.

Let G_i denotes the group ID of element A_i . The cost of a group is equal to the sum of all elements in A that belong to that group.

$$\cot(x) = \sum_{i \text{ s.t. } G_i = x} A_i$$

Two different group IDs, G_i and G_j (where $G_i \neq G_j$), are **adjacent** if and only if G_k is either G_i or G_j for every $i \leq k \leq j$. Finally, the diff() value of two group IDs x and y is defined as the absolute difference between cost(x) and cost(y).

$$diff(x, y) = |cost(x) - cost(y)|$$

Your task in this problem is to find a group assignment such that the largest diff() value between any pair of adjacent group IDs is maximized; you only need to output the largest diff() value.

For example, let $A_{1..4} = \{100, -30, -20, 70\}$. There are 8 ways to assign each element in A into a group in this example; some of them are shown as follows.

• $G_{1..4} = \{1, 2, 3, 4\}$. There are 3 pairs of group IDs that are adjacent and their diff() values are:

$$\cdot \operatorname{diff}(1,2) = |\operatorname{cost}(1) - \operatorname{cost}(2)| = |(100) - (-30)| = 130,$$

- $\cdot \operatorname{diff}(2,3) = |\operatorname{cost}(2) \operatorname{cost}(3)| = |(-30) (-20)| = 10$, and
- · diff $(3,4) = |\cot(3) \cot(4)| = |(-20) (70)| = 90.$

The largest diff() value in this group assignment is 130.

- $G_{1..4} = \{1, 2, 2, 3\}$. There are 2 pairs of group IDs that are adjacent and their diff() values are:
 - $\cdot \operatorname{diff}(1,2) = |\operatorname{cost}(1) \operatorname{cost}(2)| = |(100) (-30 + (-20))| = 150$, and

$$\text{diff}(2,3) = |\cos(2) - \cos(3)| = |(-30 + (-20)) - (-20)| = 70.$$

The largest diff() value in this group assignment is 150.

The other 6 group assignments are: $G_{1..4} = \{1, 1, 1, 2\}$, $G_{1..4} = \{1, 1, 2, 2\}$, $G_{1..4} = \{1, 2, 2, 2\}$, $G_{1..4} = \{1, 1, 2, 2\}$, $G_{1..4} = \{1, 1, 2, 3\}$, and $G_{1..4} = \{1, 2, 3, 3\}$. Among all possible group assignments in this example, the maximum largest diff() that can be obtained is 150 from the group assignment $G_{1..4} = \{1, 2, 2, 3\}$.

international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2021

Input

Input begins with a line containing an integer N ($2 \le N \le 100\,000$) representing the number of elements in array A. The next line contains N integers A_i ($-10^6 \le A_i \le 10^6$) representing the array A.

Output

Output contains an integer in a line representing the maximum possible largest diff() that can be obtained from a group assignment.

Sample Input #1

4 100 -30 -20 50

Sample Output #1

150

Explanation for the sample input/output #1

This is the example from the problem statement.

Sample Input #2

5	
12 7 4 32 9	

Sample Output #2

46

Explanation for the sample input/output #2

The maximum possible largest diff() of 45 can be obtained from the group assignment $G_{1..5} = \{1, 1, 1, 1, 2\}$. The diff() value of the only adjacent group IDs is: diff(1, 2) = 45.

Sample Input #3

6 -5 10 -5 45 -20 15

Sample Output #3

70

Explanation for the sample input/output #3

The maximum possible largest diff() of 70 can be obtained from the group assignment $G_{1..6} = \{1, 2, 2, 2, 3, 4\}$. The diff() values of any two adjacent group IDs are: diff(1, 2) = 55, diff(2, 3) = 70, and diff(3, 4) = 35.