acm

Problem L
 Summation and Divisor

You are given N arrays of integers $A_{1}[\cdots], A_{2}[\cdots], \ldots, A_{N}[\cdots]$ of possibly different size. Each element in array $B[\cdots]$ is constructed by the following procedure:

1. Pick one element from each of array A; let say the selected integers as $x_{1}, x_{2}, \ldots, x_{N}$, where x_{1} is taken from an element in A_{1}, x_{2} is taken from A_{2}, and so on.
2. Sum all those chosen integers, i.e. $x_{1}+x_{2}+\cdots+x_{N}$, and let $B[i]$ be this value.
B contains all possible combination which can be obtained by the aforementioned procedure. As you might have noticed, the size of B will be $\left|A_{1}\right|{ }^{*}\left|A_{2}\right|{ }^{*} \ldots{ }^{*}\left|A_{N}\right|$.

Your task in this problem is to find the largest integer which divides all integers in B, or formally known as the GCD (greatest common divisor).

For example, let $N=3$ and $A_{1}=\{10,40\}, A_{2}=\{60,50,90\}$, and $A_{3}=\{150,100\}$. All possible combinations which can be obtained by the aforementioned procedure are:

- $10+60+150=220$
- $10+60+100=170$
- $10+50+150=210$
- $10+50+100=160$
- $10+90+150=250$
- $10+90+100=200$
- $40+60+150=250$
- $40+60+100=200$
- $40+50+150=240$
- $40+50+100=190$
- $40+90+150=280$
- $40+90+100=230$

Therefore, $B=\{220,170,210,160,250,200,250,200,240,190,280,230\}$. The GCD of all elements in B is equal to 10 .

Input

The first line of input contains an integer $T(T \leq 100)$ denoting the number of cases. Each case begins with an integers $N(1 \leq N \leq 50)$ in a line. The next line each begins with an integer $M_{i}\left(1 \leq M_{i} \leq 50\right)$ denoting the size of array $A_{i} . M_{i}$ integers follow denoting the elements of array A_{i}. Each integer in the array will be between 1 and 1,000,000,000, inclusive.

Output

For each case, output "Case \#X: Y " (without quotes) in a line where X is the case number (starts from 1) and Y denotes the GCD of all integers in array B as described in the problem statement.
acm
international collegiate
programming contest
Jakarta 2015
event sponsor

BINUS university

Sample Input	Output for Sample Input
4	Case \#1: 10
3	Case \#2: 6
21040	Case \#3: 6000
3605090	Case \#4: 231
2150100	
2	
5339214569	
38127153	
2	
15000	
11000	
4	
5287779810549561722	
31283260008444	
21179913878	
4260831828390719615	

Explanation for $2^{\text {nd }}$ sample case
All the possible combinations are:

- $33+81=114$
- $9+153=162$
- $45+27=72$
- $33+27=60$
- $21+81=102$
- $45+153=198$
- $33+153=186$
- $21+27=48$
- $69+81=150$
- $9+81=90$
- $21+153=174$
- $69+27=96$
- $9+27=36$
- $45+81=126$
- $69+153=222$

Therefore, $B=\{114,60,186,90,36,162,102,48,174,126,72,198,150,96,222\}$. The GCD of all elements in B is 6 .

Explanation for $3^{\text {rd }}$ sample case
There is only one possible combination in this sample case, i.e. $5000+1000=6000$. The greatest integer which divides 6000 is 6000 itself.

