

Problem L Summation and Divisor

You are given *N* arrays of integers $A_1[\cdots]$, $A_2[\cdots]$, ..., $A_N[\cdots]$ of possibly different size. Each element in array $B[\cdots]$ is constructed by the following procedure:

1. Pick one element from each of array A; let say the selected integers as $x_1, x_2, ..., x_N$, where x_1 is taken from an element in A_1, x_2 is taken from A_2 , and so on.

2. Sum all those chosen integers, i.e. $x_1 + x_2 + \dots + x_N$, and let B[i] be this value.

B contains all possible combination which can be obtained by the aforementioned procedure. As you might have noticed, the size of *B* will be $|A_1| * |A_2| * ... * |A_N|$.

Your task in this problem is to find the largest integer which divides all integers in B, or formally known as the GCD (greatest common divisor).

For example, let N = 3 and $A_1 = \{10, 40\}$, $A_2 = \{60, 50, 90\}$, and $A_3 = \{150, 100\}$. All possible combinations which can be obtained by the aforementioned procedure are:

٠	10 + 60 + 150 = 220	•	40 + 60 + 150 = 250
٠	10 + 60 + 100 = 170	•	40 + 60 + 100 = 200
٠	10 + 50 + 150 = 210	•	40 + 50 + 150 = 240
٠	10 + 50 + 100 = 160	•	40 + 50 + 100 = 190
٠	10 + 90 + 150 = 250	•	40 + 90 + 150 = 280
٠	10 + 90 + 100 = 200	•	40 + 90 + 100 = 230

Therefore, $B = \{220, 170, 210, 160, 250, 200, 250, 200, 240, 190, 280, 230\}$. The GCD of all elements in *B* is equal to 10.

Input

The first line of input contains an integer T ($T \le 100$) denoting the number of cases. Each case begins with an integers N ($1 \le N \le 50$) in a line. The next line each begins with an integer M_i ($1 \le M_i \le 50$) denoting the size of array A_i . M_i integers follow denoting the elements of array A_i . Each integer in the array will be between 1 and 1,000,000,000, inclusive.

Output

For each case, output "Case #x: y" (without quotes) in a line where x is the case number (starts from 1) and y denotes the GCD of all integers in array *B* as described in the problem statement.

Sample Input	Output for Sample Input
4 3 2 10 40 3 60 50 90 2 150 100 2 5 33 9 21 45 69 3 81 27 153 2 1 5000 1 1000 4 5 2877 798 105 4956 1722 3 1283 26000 8444 2 11799 13878 4 26083 1828 3907 19615	Case #1: 10 Case #2: 6 Case #3: 6000 Case #4: 231

Explanation for 2nd sample case

All the possible combinations are:

٠	33 + 81 = 114	•	9 + 153 = 162	•	45 + 27	= 72
٠	33 + 27 = 60	•	21 + 81 = 102	•	45 + 153	= 198
٠	33 + 153 = 186	•	21 + 27 = 48	•	69 + 81	= 150
٠	9 + 81 = 90	•	21 + 153 = 174	•	69 + 27	= 96
٠	9 + 27 = 36	٠	45 + 81 = 126	•	69 + 153	= 222

Therefore, $B = \{114, 60, 186, 90, 36, 162, 102, 48, 174, 126, 72, 198, 150, 96, 222\}$. The GCD of all elements in B is 6.

Explanation for 3^{rd} sample case

There is only one possible combination in this sample case, i.e. 5000 + 1000 = 6000. The greatest integer which divides 6000 is 6000 itself.