2〇円 international collegiate

Problem C
 Counting Partition

You are given two arrays of N integers，$A_{1 . . N}$ and $B_{1 . . N}$ ，and Q queries of $\langle X, Y\rangle$ ．For each query，you are asked to split array A into a number of partitions such that in each partition except the last one：

1．Contains at least B_{Y} elements，
2．Integer X appears at least Y times，
3．The last element is an integer X ．
The only requirement for the last partition is that it must contain at least one element；it doesn＇t need to satisfy the above requirements．

Your task is to find the maximum number of partitions which can be made for each query．

For example，let $A[1 . .6]=\{1,1,2,2,1,1\}, B[1 . .6]=\{1,3,3,4,5,6\}$ ，and you are given 3 queries：
－Query $\langle 1,1\rangle$ ．We can split A into 4 partitions in this query，e．g．，$\{1|1| 2,2,1 \mid 1\}$ ，such that each partition（except the last）contains at least $B_{Y=1}=1$ element，the integer $X=1$ appears at least $Y=1$ time，its last element is $X=1$ ，and this is the largest number of partitions which can be made．
－Query $\langle 1,2\rangle$ ．We can split A into 2 partitions in this query，e．g．，$\{1,1,2,2,1 \mid 1\}$ ，and this is maximum．Note that partition $\{1,1 \mid 2,2,1,1\}$ is not valid as the first partition should contain at least $B_{2}=3$ elements．
－Query $\langle 2,3\rangle$ ．In this query，each partition except the last one， 2 should appear 3 times．As there are only two 2 ，then we cannot split A and make the only become the last partition，i．e．$\{1,1,2$ ， 2，1，1\}.

Input

The first line of input contains $T(T \leq 20)$ denoting the number of cases．Each case begins with two integers：$N(1 \leq N \leq 100,000)$ ，and $Q(1 \leq Q \leq 100,000)$ ，representing the size of array and the number of query，respectively．The second line of each case contains N integers：$A_{i}\left(1 \leq A_{i} \leq 10^{9}\right)$ representing array A ．The third line of each case contains N integers：$B_{i}\left(1 \leq B_{i} \leq N\right)$ representing array B ．The next Q lines，each contains two integers $X\left(1 \leq X \leq 10^{9}\right)$ and $Y(1 \leq Y \leq N)$ representing the query．

Output

For each case，output＂Case \＃X：＂（without quotes）in a line where X is the case number（starts from 1）．For the next Q lines in each case，output the maximum number of partitions for the respective query in a single line（as in input order）．

Warning: large input and output file.

Sample Input	Output for Sample Input
3	Case \#1:
63	
112211	2
133456	1
11	Case \#2:
12	2
23	1
43	3
3133	Case \#3:
1111	2
11	2
21	1
31	
103	
$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
29110621817	
12	
19	
21	

Explanation for $1^{\text {st }}$ sample case

This is the example from the problem statement

Explanation for $2^{\text {nd }}$ sample case

- Query $\langle 1,1\rangle$. A can be split into $\{3,1 \mid 3,3\}$. The first partition contains at least $B_{1}=1$ element, integer 1 appears at least 1 times, and the last element is 1 . Second partition is the last partition.
- Query $\langle 2,1\rangle$. A cannot be split as there is no integer 2 in array A, whilst this query requires us to have partitions (except the last) in which integer 2 appears at least 1 time in each of them.
- Query $\langle 3,1\rangle$. A can be split into $\{3|1,3| 3\}$. In both $1^{\text {st }}$ and $2^{\text {nd }}$ partitions, there are at least B_{1} $=1$ element, integer 3 appears at least 1 times, and the last element is 3 . Third partition is the last partition.

Explanation for $3^{\text {rd }}$ sample case

- Query $\langle 1,2\rangle$. A can be split into $\{1,1,1,1,1,1,1,1,1 \mid 1\}$. The first partition contains at least $B_{2}=9$ elements, integer 1 appears at least 2 times, and the last element is 1 . Second partition is the last partition.
- Query $\langle 1,9\rangle$. A can be split into $\{1,1,1,1,1,1,1,1,1 \mid 1\}$. The first partition contains at least $B_{9}=1$ element, integer 1 appears at least 9 times, and the last element is 1 . Second partition is the last partition.
- Query $\langle 2,1\rangle$. There's no integer 2 in A, thus we can only make 1 partition.

