

Problem E Cutting Tree

Tree in graph theory refers to any connected graph (of nodes and edges) which has no simple cycle, while forest corresponds to a collection of one or more trees. In this problem, you are given a forest of N nodes (of rooted trees) and K queries. Each query is in the form of:

- c x : remove the edge connecting node x and its parent.
 - If node x has no parent, then ignore this query.
- $\bigcirc a \ b$: output YES if there is a path from node *a* to node *b* in the forest; otherwise, NO.

For example, let the initial forest is shown by Figure 1.

Let's consider the following queries (in order):

- 1) Q 5 7 : output YES.
- 2) c_2 : remove edge (2, 1) the resulting forest is shown in Figure 2.
- 3) Q 5 7 : output NO, as there is no path from node 5 to node 7 in Figure 2.
- **4)** Q 4 6 : output YES.

Input

The first line of input contains an integer T ($T \le 50$) denoting the number of cases. Each case begins with two integers: N and K ($1 \le N \le 20,000$; $1 \le K \le 5,000$) denoting the number of nodes in the forest and the number of queries respectively. The nodes are numbered from 1 to N. The next line contains N integers P_i ($0 \le P_i \le N$) denoting the parent of ith node respectively. $P_i = 0$ means that node i does not have any parent (i.e. it's a root of a tree). You are guaranteed that the given input corresponds to a valid forest. The next K lines represent the queries. Each query is in the form of "c x" or " $Q \ a \ b$ " ($1 \le x, a, b \le N$), as described in the problem statement above.

Output

For each case, output "Case #x:" in a line, where x is the case number starts from 1. For each "Q a b" query in the input, output either "YES" or "NO" (without quotes) in a line whether there is a path from node a to node b in the forest.

Sample Input	Output for Sample Input
4 7 4 0 1 1 2 2 3 Q 5 7 2 2 2 3 Q 5 7 2 2 2 3 Q 5 7 2 2 2 3 Q 5 7 2 4 6 4 4 2 2 3 5 2 3 2 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <	Case #1: YES NO YES Case #2: YES NO Case #3: NO YES Case #4: YES
Q 1 1	

Explanation for 2nd sample case

The initial forest is shown in Figure 3 below.

- 1) C = 3 : remove edge (3, 2) the resulting forest is shown in Figure 4.
- 2) Q 1 2 : output YES.
- 3) C_1 : remove edge (1, 2) the resulting forest is shown in Figure 5.
- 4) Q = 1 = 2 : output NO as there is no path from node 1 to node 2 in Figure 5.

