Problem B
 Body Building

Bowo is fed up with his body shape. He has a tall posture, but he's very skinny. No matter how much he eats, he never gains any weight. Even though he is a computer geek (and he loves it), he wants a pretty and non-geek girlfriend. Unfortunately, most girls in his surrounding do not like skinny and unattractive guy. Therefore, Bowo has decided to gain some muscles in his body; he joined a fitness club and begun to do some body building exercises.

There are a lot of exercise equipments in a fitness club, and usually there should be weightlifting equipments such as barbell and dumbbell (barbell with shorter rod). Upon seeing a dumbbell, Bowo cannot help but imagining graphs which are similar to a dumbbell. A graph - which later referred as "connected component" - of N nodes is called a dumbbell if it fulfills all the following conditions:
(i) All nodes in the graph can be partitioned into two disjoint sets P and Q which have equal size, i.e. N / 2 nodes each.
(ii) Both induced subgraph of P and Q are complete graphs.
(iii) P and Q are connected by exactly one edge.

Informally, a dumbbell is obtained by connecting two equal size complete graphs with an edge.
For example, consider graph A in Figure 1 with 10 nodes and 21 edges. There are two disjoint complete graphs of size 5 which are connected by an edge. Therefore, this graph is a dumbbell. Graph B and C are also dumbbells. Graph D, on the other hand, is not.

Figure 1.

Given a graph (which might be disconnected), determine how many connected components which are dumbbells. A connected component is a connected subgraph which no vertex can be added and still be connected.

Input

The first line of input contains an integer $T(T \leq 50)$ denoting the number of cases. Each case begins with two integers: N and $M(1 \leq N \leq 100 ; 0 \leq M \leq 4,950)$ denoting the number of nodes and edges in the graph respectively. The nodes are numbered from 1 to N. The following M lines each contains two integer: a and $b(1 \leq a, b \leq \mathrm{N} ; a \neq b)$ representing an undirected edge connecting node a and node b. You are guaranteed that each pair of nodes has at most one edge in the graph.

Output

For each case, output "Case \#X: Y", where x is the case number starts from 1 and Y is the number of connected components which are dumbbells for the respective case.

	Sample Input	Output for Sample Input
4		Case \#1: 0
1	0	Case \#2: 2
4	2	Case \#3: 2
1	2	Case \#4: 3
3	4	
10	10	
1	2	
1	3	
2	3	
3	4	
4	5	
5	6	
4	6	
7	8	
8	9	
9	10	
9	5	
1	2	
3	4	
5	6	
7	8	
8	9	

Explanation for $1^{\text {st }}$ sample case

There is only one node in the graph; a dumbbell requires at least two nodes.

Explanation for $2^{\text {nd }}$ sample case
Both connected components are dumbbells: $\{1,2\}$ and $\{3,4\}$.
Explanation for $3^{\text {rd }}$ sample case
There are two connected components: $\{1,2,3,4,5,6\}$, and $\{7,8,9,10\}$, and both of them are dumbbells. The first one is dumbbell with complete graph of size 3 , while the second one has size of 2 .

Explanation for $4^{\text {th }}$ sample case
There are four connected components: $\{1,2\},\{3,4\},\{5,6\}$ and $\{7,8,9\}$. Only the first three are dumbbells.

